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Abstract. We derive the nilpotent (anti-) BRST symmetry transformations for the Dirac (matter) fields of
an interacting four (3+1)-dimensional 1-form non-Abelian gauge theory by applying the theoretical arsenal
of augmented superfield formalism where (i) the horizontality condition, and (ii) the equality of a gauge
invariant quantity, on the six (4,2)-dimensional supermanifold, are exploited together. The above super-
manifold is parameterized by four bosonic spacetime coordinates xµ (with µ = 0, 1, 2, 3) and a couple of
Grassmannian variables θ and θ. The on-shell nilpotent BRST symmetry transformations for all the fields of
the theory are derived by considering the chiral superfields on the five (4,1)-dimensional super sub-manifold
and the off-shell nilpotent symmetry transformations emerge from the consideration of the general super-
fields on the full six (4,2)-dimensional supermanifold. Geometrical interpretations for all the above nilpotent
symmetry transformations are also discussed within the framework of augmented superfield formalism.

1 Introduction

The usual superfield approach [1–6] to Becchi–Rouet–
Stora–Tyutin (BRST) formalism provides the geometrical
origin and interpretations for some of the abstract mathe-
matical properties associated with the nilpotent and con-
served (anti-) BRST charges (and the nilpotent symmetry
transformations they generate) for the gauge and (anti-)
ghost fields of the p-form (p= 1, 2, 3 . . . ) interacting gauge
theories. This approach, however, does not shed any light
on the (anti-) BRST symmetry transformations (and the
corresponding generators) for the matter fields that have
interactions with the p-form gauge fields of the above in-
teracting gauge theories. It has been an interesting and
challenging problem to derive these symmetry transform-
ations for the matter fields within the framework of su-
perfield formalism without spoiling the beauty of the ge-
ometrical interpretations (for the conserved and nilpotent
(anti-) BRST charges, the corresponding nilpotent trans-
formations for the gauge and (anti-) ghost fields, their as-
sociated key properties, etc.), which emerge from the hori-
zontality condition alone.
To elaborate a bit on the usual superfield approach

to BRST formalism (endowed with the theoretical arse-
nal of the horizontality condition alone), it will be noted
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that, for the D-dimensional Abelian p-form gauge the-

ories, a (p+1)-form super curvature1 F̃ (p+1) = d̃Ã(p) is
constructed from the super exterior derivative d̃= dxµ∂µ+
dθ∂θ+dθ̄∂θ̄ (with d̃

2 = 0) and the super p-form connection
Ã(p) on a (D, 2)-dimensional supermanifold parameter-
ized by the D-number of bosonic spacetime variables xµ

(with µ = 0, 1, 2 . . .D−1) and a couple of Grassmannian
variables θ and θ̄ (with θ2 = θ̄2 = 0, θθ̄+ θ̄θ = 0). This is
subsequently equated with the D-dimensional ordinary
(p+1)-form curvature F (p+1) = dA(p) constructed from
the ordinary exterior derivative d = dxµ∂µ (with d

2 =

0) and the ordinary p-from connection A(p) = 1
p! (dx

µ1 ∧
dxµ2 . . .∧dxµp )Aµ1,µ2...µp due to the horizontality condi-
tion (which has been christened as the soul-flatness con-
dition in [7]). This leads to the derivation of the nilpotent
and anti-commuting (anti-) BRST symmetry transform-
ations for only the gauge and (anti-) ghost fields of the
D-dimensional Lagrangian density of an (anti-) BRST in-
variant p-form Abelian gauge theory.
In a recent set of papers [8–13], the above horizon-

tality condition was consistently extended2 by requiring
the equality of (i) the conserved currents/charges, and

1 For the 1-form non-Abelian gauge theory, the super cur-

vature 2-form F̃ (2) = d̃Ã(1)+ iÃ(1)∧A(1) is equated with the
ordinary 2-form F (2) = dA(1)+iA(1)∧A(1) due to the horizon-
tality condition that leads to the derivation of the nilpotent
(anti-) BRST symmetry transformations for the gauge and
(anti-)ghost fields (see, e.g., [3] for details).
2 These extended versions have been christened as the aug-
mented superfield formulation.
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(ii) the gauge (i.e., BRST) invariant quantities that owe
their origin to the (super) covariant derivatives on the
appropriate supermanifolds, so that the nilpotent (anti-
) BRST symmetry transformations for the matter (or its
analogue) fields can be derived in a logical fashion. The
former restriction leads to the consistent derivation of the
nilpotent symmetry transformations for the matter fields,
whereas the latter restriction yields the mathematically
exact nilpotent symmetry transformations for the matter
fields. Both these extensions of the usual superfield for-
malism have their own merits. For instance, the former is
applicable to any reparameterization and/or gauge invari-
ant theories where the covariant derivatives do not play
such an important role (e.g., the system of (super) rela-
tivistic particles [12, 13]). The latter crucially depends on
the existence of covariant derivatives in the theory (e.g.,
the U(1) and SU(N) gauge invariant theories [11, 14, 15]).
One of the key points of the above extensions is the

fact that the geometrical interpretations for the (anti-)
BRST charges (and the corresponding nilpotent symme-
try transformations generated by them) remain exactly
the same as in the usual superfield approach to BRST
formalism [1–7]. For instance, the above (anti-) BRST
charges turn out to be the translational generators (i.e.,
(Limθ̄→0(∂/∂θ)) Limθ→0(∂/∂θ̄)) along the Grassmannian
directions of the (D, 2)-dimensional supermanifold. Their
nilpotency property is found to be encoded in the two suc-
cessive translations (i.e., (∂/∂θ)2 = 0, (∂/∂θ̄)2 = 0) of the
superfields along any particular Grassmannian direction of
the suitably chosen (D, 2)-dimensional supermanifold. The
anticommutativity property of the BRST and anti-BRST
charges are found to be linked with such a kind of property
(i.e., (∂/∂θ)(∂/∂θ̄)+ (∂/∂θ̄)(∂/∂θ) = 0) associated with
the translational generators along the Grassmannian direc-
tions. Finally, the internal BRST and anti-BRST symme-
try transformations for the local D-dimensional ordinary
fields are geometrically equivalent to the translations of the
corresponding superfields along the Grassmannian direc-
tions of the (D, 2)-dimensional supermanifold.
In our present investigation, we exploit the latter exten-

sion of the usual superfield approach to BRST formalism
to obtain the mathematically exact nilpotent (anti-) BRST
symmetry transformations for the matter (Dirac) fields
of the physical four (3+1)-dimensional (4D) non-Abelian
gauge theory. First, as a warm-up exercise, we derive the
on-shell nilpotent BRST symmetry transformations for the
matter as well as gauge and (anti-) ghost fields by invoking
the definition of the chiral superfields on the five (4,1)-
dimensional chiral super sub-manifold of the general (4,2)-
dimensional supermanifold. This exercise also provides, in
a subtle way, the logical reason behind the non-existence
of the on-shell nilpotent anti-BRST symmetry transform-
ations for a certain specific set of Lagrangian densities of
the interacting 4D non-Abelian gauge theory. Later on,
we derive the off-shell nilpotent (anti-) BRST symmetry
transformations for all the fields of the 4D non-Abelian
gauge theory by considering the general superfields on the
general six (4,2)-dimensional supermanifold. For this pur-
pose, we tap the potential and power of the horizontality
condition as well as the additional gauge-invariant restric-

tion on the above supermanifold. We demonstrate that the
above restrictions are beautifully intertwined and possess
a common mathematical origin.
Our present endeavour is essential basically on three

counts. First, it has been a challenging problem to derive
the nilpotent (anti-) BRST symmetry transformations for
the matter fields of any arbitrary gauge theory within the
framework of the superfield approach to BRST formal-
ism without having any conflict with the key results and
observations of the usual superfield formalism [1–7]. Sec-
ond, to check the validity of the gauge-invariant restriction
in yielding mathematically exact nilpotent (anti-) BRST
transformations for the matter fields of an interacting 4D
non-Abelian SU(N) gauge theory, which was found to be
true for the interacting 4DAbelian U(1) gauge theory3 [14,
15]. Finally, the ideas proposed in our present investiga-
tion might turn out to be useful in the derivation of the
nilpotent (anti-) BRST symmetry transformations for the
reparameterization invariant theories of gravitation, where
the covariant derivatives play very important roles in gen-
erating the interaction terms. It is well-known that some
of the key features of non-Abelian gauge theories are very
closely connected to a few central ideas in the theory of
gravitation (see, e.g., [16] for details).
The contents of our present paper are organized as fol-

lows. To set up the notations and conventions, in Sect. 2 we
discuss the bare essentials of the (anti-) BRST symmetry
transformations for the four (3+1)-dimensional interact-
ing non-Abelian gauge theory. Section 3 is devoted to the
derivation of the on-shell nilpotent BRST symmetry trans-
formations in the augmented superfield formulation, where
only the chiral superfields are considered on the five (4,1)-
dimensional super sub-manifold of the general six (4,2)-
dimensional supermanifold. The off shell nilpotent (anti-)
BRST symmetry transformations for all the fields of the
Lagrangian densities are derived in Sect. 4, where a general
set of superfields is considered on the six (4,2)-dimensional
supermanifold. Finally, in Sect. 5, we make some conclud-
ing remarks and point out a few future directions for fur-
ther investigations.

2 Nilpotent symmetry transformations
in Lagrangian formalism: a brief sketch

We begin with the BRST invariant Lagrangian density of
the physical four (3+1)-dimensional non-Abelian 1-form

(i.e., A(1) = dxµAµ) interacting gauge theory, in the Feyn-
man gauge, as (see, e.g., [16, 17])

Lb =−
1

4
Fµν ·F

µν + ψ̄(iγµDµ−m)ψ+B · (∂µA
µ)

+
1

2
B ·B− i∂µC̄ ·D

µC , (1)

3 It is self-evident that the latter gauge theory (i.e., Abelian)
is the limiting case of the former (i.e., non-Abelian) theory that
is theoretically more general in nature.
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where Fµν = ∂µAν −∂νAµ+ iAµ×Aν is the field strength
tensor for the group valued non-Abelian gauge potential
Aµ ≡ AaµT

a with the group generators T ’s obeying the al-
gebra [T a, T b] = fabcT c. The structure constant fabc can
be chosen to be totally anti-symmetric in the group in-
dices a, b and c for a semi-simple Lie group [16]. The
covariant derivatives Dµψ = ∂µψ+ iA

a
µ T

aψ and DµC
a =

∂µC
a+ ifabcAbµC

c ≡ ∂µCa+ i(Aµ×C)a are defined
4 on

the matter (quark) field ψ and ghost field Ca, such that
[Dµ, Dν ]ψ = iFµνψ and ([Dµ, Dν ])C

a = i(Fµν ×C)a. It
will be noted that these definitions for Fµν agree with
the Maurer–Cartan equation F (2) = dA(1)+ iA(1)∧A(1) ≡
1
2! (dx

µ∧dxν)Fµν that defines the 2-form F (2) which, ulti-
mately, leads to the derivation of Fµν . In the above equa-
tion (1), Ba are the Nakanishi–Lautrup auxiliary fields,
and the anti-commuting (i.e., (Ca)2 = 0 = (C̄a)2, CaC̄b+
C̄bCa = 0) (anti-) ghost fields (C̄a)Ca are required for the
proof of unitarity in the 1-form non-Abelian gauge theory5.
Furthermore, the γ’s are the usual 4×4 Dirac matrices in
the physical four (3+1)-dimensional Minkowski space.
The above Lagrangian density (1) respects the follow-

ing off-shell nilpotent (s2b = 0) BRST symmetry transform-
ations (sb) [16, 17]

sbAµ =DµC, sbC =−
i

2
(C×C), sbC̄ = iB,

sbB = 0, sbψ =−i(C ·T )ψ, sbψ̄ =−iψ̄(C ·T ),

sbFµν = i(Fµν ×C) . (2)

It will be noted that the kinetic energy term
(
− 14F

µν ·Fµν
)

remains invariant under the BRST transformations (i.e.,
sb(−

1
4F
µν ·Fµν) =−

i
2f
abcF aµνF

µνbCc = 0) because of the
totally anti-symmetric property of the structure constants
fabc. The on-shell (∂µD

µC = 0) nilpotent (s̃2b = 0) version
of the above nilpotent symmetry transformations (i.e., s̃b),
are

s̃bAµ =DµC, s̃bC =−
i

2
(C×C), s̃bC̄ =−i(∂µA

µ),

s̃bψ =−i(C ·T )ψ, s̃bψ̄ =−iψ̄(C ·T ) ,

s̃bFµν = i(Fµν ×C) , (3)

4 We adopt here the conventions and notations such that
the Minkowski 4D flat metric is ηµν = diag(+1,−1,−1,−1) on
the spacetime manifold. The dot product A ·B = AaBa and
cross product (A×B)a = fabcAbBc are defined in the group
space of the semi-simple Lie group. Here the Greek indices
µ, ν, ρ . . . = 0, 1, 2, 3 stand for the spacetime directions on the
ordinary Minkowski spacetime manifold and the Latin indices
a, b, c . . . = 1, 2, 3 . . . denote the SU(N) group indices in the
“colour” space of the internal group manifold.
5 The importance of the ghost fields appears in the proof of
unitarity of a given physical process (allowed by the interact-
ing non-Abelian gauge theory) where, for each gluon (a bosonic
non-Abelian gauge field) Feynman loop diagram, a loop dia-
gram constructed by the anti-commuting ghost field alone, is
required (see, e.g., [18] for details).

under which the following Lagrangian density

L(0)b =−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ

−
1

2
(∂µA

µ) · (∂ρA
ρ)− i∂µC̄ ·D

µC , (4)

changes to a total derivative (i.e., s̃bL
(0)
b = −∂µ[(∂ρA

ρ) ·
DµC]).
The following off-shell nilpotent (s2ab = 0) version of the

anti-BRST (sab) transformations

sabAµ =DµC̄, sabC̄ =−
i

2
(C̄× C̄), sabC = iB̄ ,

sabB = i(B× C̄), sabFµν = i(Fµν × C̄), sabB̄ = 0 ,

sabψ =−i(C̄ ·T )ψ, sabψ̄ =−iψ̄(C̄ ·T ) , (5)

are the symmetry transformations for the following equiva-
lent Lagrangians

L(1)
B̄
=−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ+B · (∂µA
µ)

+
1

2
(B ·B+ B̄ · B̄)− i∂µC̄ ·D

µC , (6)

L(2)
B̄
=−
1

4
Fµν ·Fµν + ψ̄ (iγ

µDµ−m)ψ− B̄ · (∂µA
µ)

+
1

2
(B ·B+ B̄ · B̄)− iDµC̄ ·∂

µC , (7)

where another auxiliary field B̄ has been introduced with
the restriction B+ B̄ = −(C× C̄) (see, e.g. [19]). It can
be checked that the anti-commutativity property (sbsab+
sabsb = 0) is true for any arbitrary field of the above La-
grangian densities. For the proof of this statement, one
should also take into account sbB̄ = i(B̄×C), which is
not mentioned in (2). We emphasize that the on-shell ver-
sion of the anti-BRST symmetry transformations does not
exist for any of the above cited Lagrangian densities (see,
e.g. [20]).
All the above nilpotent symmetry transformations can

be succinctly expressed in terms of the conserved and off-
shell nilpotent (anti-) BRST chargesQr and on-shell nilpo-
tent BRST charge Q̃b, as

srΦ=−i[Φ,Qr]±, r = b, ab, s̃bΦ̃=−i[Φ̃, Q̃b]± ,
(8)

where the (+)− signs, as the subscripts, on the square
brackets stand for the (anti-) commutator for the generic
field Φ=Aµ, C, C̄, ψ, ψ̄, B, B̄ and Φ̃=Aµ, C, C̄, ψ, ψ̄ of the
above appropriate Lagrangian densities being (fermionic)
bosonic in nature. For our discussions, the explicit forms
of Qr and Q̃b are not essential, but they can be found
in [16, 17].

3 On-shell nilpotent BRST symmetries:
augmented superfield approach

In this section, first of all, we take the chiral superfields,
defined on the five (4,1)-dimensional super sub-manifold of
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the general six (4,2)-dimensional supermanifold and derive
the on-shell nilpotent BRST symmetry transformations for
the gauge- and the (anti-) ghost fields by exploiting the
well-known horizontality condition. Later, in Sect. 3.2, we
derive the nilpotent BRST transformations for the Dirac
fields ψ and ψ̄ by exploiting a gauge-invariant condition on
the five (4,1)-dimensional chiral super sub-manifold.

3.1 Horizontality condition: on-shell nilpotent BRST
symmetries for gauge and (anti-) ghost fields

For the present paper to be self-contained, we shall
briefly invoke the essentials of the horizontality condi-
tion (connected with the usual superfield formalism [1–7])
in obtaining the on-shell nilpotent symmetry transform-
ations (3) that exist for the non-Abelian gauge theory. For
this purpose, we define the chiral (i.e., θ→ 0) super exte-
rior derivative and super 1-form connection, as taken from
our earlier work (see, e.g. [20] for details):

d̃(c) = dx
µ∂µ+dθ̄∂θ̄ ,

Ã
(1)
(c) = dx

µB(c)µ (x, θ̄)+dθ̄F
(c)(x, θ̄) . (9)

The chiral super expansions for the following multiplet su-
perfields are [20]

(B(c)µ ·T )(x, θ̄) = (Aµ ·T )(x)+ θ̄(Rµ ·T )(x),

(F (c) ·T )(x, θ̄) = (C ·T )(x)+ iθ̄(B1 ·T )(x) ,

(F̄ (c) ·T )(x, θ̄) = (C̄ ·T )(x)+ iθ̄ (B2 ·T )(x) . (10)

In fact, these superfields are the chiral limits of the gen-
eral super expansion that will be discussed in Sect. 4.1. In
general, the super exterior derivative d̃ = dxµ∂µ+dθ∂θ+
dθ̄∂θ̄ and the super 1-form connection Ã

(1) = dZMAM =
dxµBµ(x, θ, θ̄)+ dθF̄ (x, θ, θ̄)+ dθ̄F (x, θ, θ̄). It is evident
that, in chiral limit (θ→ 0), we have the definition of
the super exterior derivative and super 1-form connec-
tion as given in (9). In the chiral expansion (10), Rµ ·
T ≡RaµT

a, B1 ·T ≡Ba1T
a andB2 ·T ≡Ba2T

a are the group
valued secondary fields. In fact, in the horizontality con-
dition (i.e., F̃

(2)
(c) = F

(2)), we shall equate the super chiral

2-form F̃
(2)
(c) = d̃(c)Ã

(1)
(c) + iÃ

(1)
(c) ∧ Ã

(1)
(c) , defined on the five

(4,1)-dimensional super sub-manifold, where

d̃(c)Ã
(1)
(c) = (dx

µ∧dxν)
(
∂µB

(c)
ν

)
+(dxµ∧dθ̄)

×
[
∂µF

(c)−∂θ̄B
(c)
µ

]
− (dθ̄∧dθ̄)(∂θ̄F

(c)) ,

(11)

iÃ(1)∧ Ã(1) = i(dxµ∧dxν)
(
B(c)µ B

(c)
ν

)
+ i(dxµ∧dθ̄)

×
[
B(c)µ , F

(c)
]
− i(dθ̄∧dθ̄)(F (c)F (c)) ,

(12)

with the ordinary 2-form (F (2) = dA(1)+ iA(1) ∧A(1) ≡
1
2! (dx

µ ∧dxν)(Fµν ·T )) curvature defined on the ordinary
4D spacetime manifold.

The consequences of the above horizontality condition
F̃
(2)
(c) = F

(2) on the five (4,1)-dimensional chiral super sub-
manifold are

Rµ =DµC, B1 =−
1

2
(C×C), B1×C = 0 . (13)

The insertions of the above values into the expansion (10),
vis-à-vis the on-shell nilpotent transformations (3), lead to

B(c)µ (x, θ̄) =Aµ(x)+ θ̄(s̃bAµ(x)) ,

F (c)(x, θ̄) = C(x)+ θ̄(s̃bC(x)) . (14)

It will be noted that the secondary field (B2 ·T ) in the
expansion of F̄ (c) is not determined by the above horizon-
tality condition. The equation of motion B+(∂µA

µ) = 0,
however, comes to our rescue if we identify the secondary
field B2 with the Nakanishi–Lautrup auxiliary field B. In
other words, we have the freedom to choose B2 ≡ B =
−
(
∂µAµ

)
. This ultimately leads to

F̄ (c)(x, θ̄) = C̄(x)+ θ̄(s̃bC̄(x)) , (15)

which is similar to the expansions of the other chiral super-
fields in (14).
We wrap up this subsection with the comment that the

anti-chiral version of the above discussion does not lead to
any appropriate nilpotent symmetry transformations (see,
e.g. [20]). This provides, in a subtle way, the reason be-
hind the non-existence of the on-shell nilpotent anti-BRST
transformations for the above cited Lagrangian densities
of the non-Abelian gauge theory. In contrast to this ob-
servation, for the Abelian U(1) gauge theory, it has been
shown [20] that the anti-chiral version of the above su-
perfield formalism does lead to the derivation of the on-
shell nilpotent (and anti-commuting) anti-BRST symme-
try transformations.

3.2 Gauge-invariant condition: nilpotent BRST
symmetry transformations for matter fields

To obtain the nilpotent BRST transformations for the
matter fields ψ(x), ¯ψ(x), we begin with the following gauge
invariant condition on the chiral five (4,1)-dimensional su-
per sub-manifold of the (4,2)-dimensional supermanifold:

Ψ̄ (c)(x, θ̄)(d̃(c)+ iÃ
(1)(h)
(c) )Ψ (c)(x, θ̄) = ψ̄(x)(d+ iA(1))ψ(x) ,

(16)

where the expansions for the chiral Dirac superfields are

Ψ (c)(x, θ̄) = ψ(x)+ iθ̄(b1 ·T )(x) ,

Ψ̄ (c)(x, θ̄) = ψ̄(x)+ iθ̄(b2 ·T )(x) . (17)

It is evident that the r.h.s. of (16) [i.e., dxµψ̄(x)(∂µ +
iAµ)ψ(x)] is a gauge (i.e., BRST) invariant quantity for
the non-Abelian gauge theory described by the Lagrangian
densities (1), (6) and (7). On the l.h.s. of (16), we have

Ã
(1)(h)
(c) = dxµ

(
Aµ+ θ̄DµC

)
+dθ̄
[
C− i2 θ̄(C×C)

]
, which is
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the expression for the super 1-form Ã
(1)
(c) after the applica-

tion of the horizontality condition.
It is straightforward to note that the l.h.s. of (16) will

produce the coefficients of the differentials dxµ, dxµ(θ̄), dθ̄
and dθ̄(θ̄). Out of which the coefficient of dxµ will match
with a similar kind of term emerging from the r.h.s. It is
but natural that the rest of the coefficients are set equal to
zero. For algebraic convenience, it is useful to first collect
the coefficients of dθ̄ and dθ̄(θ̄) from the l.h.s. of (16). These
coefficients are

− idθ̄[ψ̄b1+ ψ̄Cψ]+dθ̄(θ̄)

×

[
b2b1+

1

2
ψ̄(C×C)ψ+ ψ̄Cb1+ b2Cψ

]
. (18)

Setting the coefficients of dθ̄ and dθ̄(θ̄) equal to zero sepa-
rately and independently, we obtain (for ψ̄ �= 0), the follow-
ing relationships

b1 ≡ b1 ·T =−(C ·T )ψ, Cb1+
1

2
(C×C)ψ = 0 ,

(19)

where, in the proof of the latter condition, the former con-
dition b1 ·T =− (C ·T )ψ has been used as an input.
The explicit expressions for the coefficients of dxµ and

dxµ(θ̄), from the l.h.s. of (16), are collected together, as
follows

dxµ(ψ̄Dµψ)− idx
µ(θ̄)
[
ψ̄Dµb1− b2Dµψ+ ψ̄DµCψ

]
.

(20)

It is clear that the coefficient of dxµ matches with that of
the r.h.s. Using b1 =−(C ·T )ψ, we obtain the following re-
lationship

idxµθ̄[ψ̄(C ·T )+ b2]Dµψ = 0 . (21)

For our present interacting non-Abelian gauge theory,
Dµψ �= 0. Thus, the solution that emerges from (21), is

b2 ·T =−ψ̄(C ·T ) . (22)

Substitution of b1 and b2 from (19) and (22) into (17) leads
to the derivation of the nilpotent BRST symmetry trans-
formations (3) for the matter fields, as given below

Ψ(x, θ̄) = ψ(x)+ θ̄(s̃bψ), Ψ̄(x, θ̄) = ψ̄(x)+ θ̄(s̃bψ̄) .
(23)

The above expansion, in terms of s̃b, is exactly in the same
form as the expansions (14) and (15). It should be em-
phasized that the gauge-covariant version of (16) (i.e., (d̃+
iÃ(1)(h))Ψ (c) = (d+ iA(1))ψ) does not lead to the deriva-
tions of (23). Rather, it leads to an unphysical restriction:
Dµψ = 0.
The expansions in (14), (15) and (23) provide the ge-

ometrical interpretations for the on-shell nilpotent BRST
symmetry s̃b (and the corresponding generator BRST
charge Q̃b) as the translation generator (∂/∂θ̄) along

the Grassmannian direction (θ̄) of the chiral five (4,1)-
dimensional super sub- manifold (parameterized by xµ

and θ̄) of the general six (4,2)-dimensional supermanifold.
We note, in passing, that there is a mutual consistency
and complementarity between the horizontality condi-
tion and the gauge invariant relation because (i) they are
inter-linked, and (ii) they owe their origin to the super ex-
terior derivatives (d̃)d and the super 1-form connection
(Ã(1))A(1).

4 Off-shell nilpotent symmetries:
augmented superfield formalism

In this section, we shall derive the off-shell nilpotent sym-
metry transformations for all the fields of the (anti-) BRST
invariant Lagrangian densities given in (1), (6), and (7) by
applying the augmented superfield formalism.

4.1 Horizontality condition: off-shell nilpotent BRST
and anti-BRST symmetries

For the paper to be self-contained, we recapitulate very
briefly some of the key points of earlier work [3] on the hor-
izontality condition in the context of non-Abelian gauge
theory. We consider the superfields Bµ(x, θ, θ̄), F (x, θ, θ̄)
and F̄ (x, θ, θ̄) that form the vector multiplet of the su-
per 1-form connection Ã(1) = dZMAM = dx

µBµ+ dθF̄ +
dθ̄F on the general six (4,2)-dimensional super-manifold.
These component superfields can be expanded, in terms
of the basic fields Aµ, C, C̄ and the secondary fields, along
the Grassmannian directions of the above general super-
manifold, as [3, 4, 11, 20]

(Bµ ·T )(x, θ, θ̄) = (Aµ ·T )(x)+ θ(̄Rµ ·T )(x)

+ θ̄(Rµ ·T )(x)+ iθθ̄(Sµ ·T )(x) ,

(F ·T )(x, θ, θ̄) = (C ·T )(x)+ iθ(B̄1 ·T )(x)

+ iθ̄(B1 ·T )(x)+ iθθ̄(s ·T )(x) ,

(F̄ ·T )(x, θ, θ̄) = (C̄ ·T )(x)+ i(B̄2 ·T )(x)

+ iθ̄(B2 ·T )(x)+ iθθ̄(s̄ ·T )(x) . (24)

It will be noted that the bosonic fields Aµ, Sµ, B1, B̄1, B2,
B̄2 do match with the fermionic fields Rµ, R̄µ, C, C̄, s, s̄

6.
All the secondary fields will be expressed in terms of
the basic and auxiliary fields of the above cited 4D
(anti-) BRST invariant Lagrangian densities (6) and (7)
for the non-Abelian gauge theory by tapping the potential
of the horizontality condition on the general six (4,2)-
dimensional supermanifold.
For the application of the horizontality condition in

its full blaze of glory, it is important to define the su-
per exterior derivative d̃ = dxµ∂µ+ dθ∂θ + dθ̄∂θ̄ (with
d̃2 = 0) on the six (4,2)-dimensional supermanifold. Ex-
ploiting d̃ and Ã(1), one can define the super 2-form

6 Hereafter, we shall be using, more often, the simpler nota-
tionsAµ ≡Aµ ·T,B2 ≡B2 ·T , etc., for the sake of brevity in the
rest of the text.
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curvature F̃ (2) = d̃Ã(1)+ iÃ(1) ∧ Ã(1) by exploiting the
Maurer–Cartan equation. This is subsequently equated
with the ordinary 2-form curvature F (2) = dA(1)+ iA(1) ∧
A(1). This equality (the so-called horizontality condition)
yields the following relationships, between the secondary
fields on the one hand and the basic fields and auxiliary
fields on the other hand, of the super expansion (24) (see,
e.g., [3, 11, 20])

Rµ =DµC, R̄µ =DµC̄, B̄1+B2 =−(C× C̄) ,

s̄=−i(B2× C̄), B1 =−
1

2
(C×C), B̄2 =−

1

2
(C̄× C̄) ,

s= i(B̄1×C),

Sµ =DµB2+DµC× C̄ ≡−DµB̄1−DµC̄×C . (25)

As we did earlier in Sect. 3, we identify B2 =B and B̄1 = B̄
of the (anti-) BRST invariant Lagrangian densities (6) and
(7) of Sect. 2. Having done this, we immediately obtain the
(anti-) BRST transformations (2) and (5), because the su-
per expansion in (24) can now be written, in terms of these
transformations, as (see, e.g. [3, 11, 20] for details)

B(h)µ (x, θ, θ̄) =Aµ(x)+ θ(sabAµ(x))+ θ̄(sbAµ(x))

+ θθ̄(sbsabAµ(x)) ,

F (h)(x, θ, θ̄) = C(x)+ θ(sabC(x))+ θ̄(sbC(x))

+ θθ̄(sbsabC(x)) ,

F̄ (h)(x, θ, θ̄) = C̄(x)+ θ(sabC̄(x))+ θ̄(sbC̄(x))

+ θθ̄(sbsabC̄(x)) , (26)

where the superscript (h), on the above superfields, de-
notes the ensuing form of the superfields after the appli-
cation of the horizontality condition. The above equation,
vis-à-vis (8), provides the geometrical interpretation of the
(anti-) BRST charges (that generate the off-shell nilpo-
tent (s2(a)b = 0) transformations s(a)b) as the translational
generators along the Grassmannian directions of the six
(4,2)-dimensional supermanifold.

4.2 Gauge invariant condition: off-shell nilpotent
(anti-) BRST symmetries for matter fields

To obtain the off-shell nilpotent BRST and anti-BRST
symmetries together for the matter fields, we begin with
the following gauge (i.e., BRST) invariant condition on the
six (4,2)-dimensional supermanifold

Ψ̄(x, θ, θ̄)(d̃+ iÃ(1)(h))Ψ(x, θ, θ̄) = ψ̄(x)
(
d+ iA(1)

)
ψ(x) ,

(27)

where the superfields Ψ(x, θ, θ̄) and Ψ̄(x, θ, θ̄), correspond-
ing to the 4D spinors ψ(x) and ψ̄(x), have the following
expansions along the Grassmannian directions of the six
(4,2)-dimensional supermanifold

Ψ(x, θ, θ̄) = ψ(x)+ iθ(b̄1 ·T )(x)+ iθ̄(b1 ·T )(x)

+ iθθ̄(f ·T )(x) ,

Ψ̄(x, θ, θ̄) = ψ̄(x)+ iθ(b̄2 ·T )(x)+ iθ̄(b2 ·T )(x)

+ iθθ̄(f̄ ·T )(x) , (28)

where (i) bosonic (commuting) fields b1, b̄1, b2, b̄2 match
with the fermionic (anticommuting) fields ψ, ψ̄, f, f̄ , (ii)
the secondary fields b1, b̄1, b2, b̄2, f, f̄ will be determined in
terms of the basic and auxiliary fields of the Lagrangian
densities (6) and (7), due to the gauge invariant restric-
tion (27) invoked on the above general supermanifold,
and (iii) the explicit form of the super 1-form connec-

tion Ã(1)(h), on the l.h.s. of (27), is: Ã(1)(h) = dxµB
(h)
µ +

dθF̄ (h)+dθ̄F (h). The expressions for the redefined multi-
plet superfields B

(h)
µ , F (h), F̄ (h) are given in (26).

It is clear that, on the r.h.s. of (27), we have the
gauge (i.e., BRST) invariant quantity (dxµ)[ψ̄(x)(∂µ +
iAµ ·T )ψ(x)] with a single differential dxµ on the 4D space-
time sub-manifold of the six (4,2)-dimensional superman-
ifold. The l.h.s. will, however, produce the coefficients of
the differentials dxµ, dθ and dθ̄. Out of these, only the co-
efficient of the pure dxµ will match with the r.h.s. The rest
of the coefficients of all the differentials will be set equal
to zero. For algebraic convenience, it is helpful and handy
to collect the coefficients of dθ and dθ̄ in the first go. The
coefficients of dθ are

−idθ[ψ̄(b̄1+ C̄ψ)]+dθ(θ)L1+dθ(θ̄)L2+dθ(θθ̄)L3 ,
(29)

where the explicit expressions for L1, L2 and L3 are

L1 = b̄2b̄1+ b̄2C̄ψ+ ψ̄C̄b̄1+
1

2
ψ̄(C̄× C̄)ψ ,

L2 = b2b̄1+ iψ̄f + b2C̄ψ− ψ̄Bψ+ ψ̄C̄b1 ,

L3 = f̄ b̄1+ b̄2f + ψ̄C̄f + f̄ C̄ψ− iψ̄(B× C̄)ψ− iψ̄Bb̄1

−
i

2
ψ̄(C̄× C̄)b1+ ib̄2Bψ− ib̄2C̄b1+ ib2C̄b̄1

+
i

2
b2(C̄× C̄)ψ . (30)

Setting the coefficients of dθ, dθ(θ), dθ(θ̄) and dθ(θθ̄) equal
to zero, we obtain the following solutions (for ψ̄ �= 0)

b̄1 =−(C̄ ·T )ψ, f =−i(Bψ− C̄b1) . (31)

The rest of the conditions, which emerge after the impo-
sition of the above restrictions, are satisfied if we use the
above values of b̄1 and f .
In a similar fashion, collecting the coefficients of dθ̄

from the l.h.s. of (27), we obtain the following explicit ex-
pressions

−idθ̄[ψ̄(b1+Cψ)]+dθ̄(θ)M1+dθ̄(θ̄)M2+dθ̄(θθ̄)M3 ,
(32)
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where the explicit forms ofM1,M2 andM3 are

M1 = b̄2(b1+Cψ)+ ψ̄(Cb̄1− if − B̄ψ) ,

M2 = b2(b1+Cψ)+ ψ̄[Cb1+
1

2
(C×C)ψ] ,

M3 = b2[f + iCb̄1− iB̄ψ]+ f̄ [b1+Cψ]

− ib̄2

[
Cb1+

1

2
(C×C)ψ

]
,

+ ψ̄

[
Cf + i(B̄×C)ψ+

i

2
(C×C)b̄1+ iB̄b1

]
.

(33)

Setting the coefficients of dθ̄, dθ̄(θ), dθ̄(θ̄) and dθ̄(θθ̄) equal
to zero separately and independently, we obtain the follow-
ing solutions (for ψ̄ �= 0)

b1 =−(C ·T )ψ, f = i(B̄ψ−Cb̄1) . (34)

It will be noted that the expressions for f , derived in (31)
and (34), are consistent because, finally, they lead to B+
B̄ =−(C× C̄), which has already been quoted in (25). The
rest of the relations are found to be consistent if we use the
values of b1, b̄1 and f given in (31) and (34).
Finally, we collect the coefficients of dxµ from the l.h.s.

of (27). These are written, in their most explicit form, as
follows

dxµ(ψ̄∂µψ+ iψ̄Aµψ)

+ idxµ(θ)[b̄2Dµψ− ψ̄Dµb̄1− ψ̄(DµC̄)ψ]

+ idxµ(θ̄)[b2Dµψ− ψ̄Dµb1− ψ̄(DµC)ψ]

+ idxµ(θθ̄)
[
f̄Dµψ+ ib̄2(Dµb1+DµCψ)

− ib2(Dµb̄1+DµC̄ψ)+ ψ̄{Dµf − iDµC̄b1

+ iDµCb̄1+ iDµBψ+ i(DµC× C̄)ψ}
]
. (35)

It is obvious that the coefficient of pure dxµ matches with
the corresponding coefficient emerging from the r.h.s. Ex-
ploiting the values of b̄1, b1 and f from (31) and (34), and
setting the coefficients of dxµ(θ), dxµ(θ̄) and dxµ(θθ̄) equal
to zero separately, leads to the following conditions

(b̄2+ ψ̄C̄)Dµψ = 0, (b2+ ψ̄C)Dµψ = 0 ,[
f̄ − ib̄2C+ ib2C̄− iψ̄

{
B+
1

2
(C× C̄)

}]
Dµψ = 0 .

(36)

It is clear that, for the interacting non-Abelian gauge the-
ory under consideration, we haveDµψ �= 0 because it leads
to the existence of the interaction term in the theory. Thus,
the solutions obtained from the above are

b̄2 =−ψ̄C̄, b2 =−ψ̄C ,

f̄ = iψ̄

[
B+
1

2
(C×C)

]
. (37)

Substitutions of the values from (31), (34) and (37) into the
super expansions (28), lead to the following

Ψ(x, θ, θ̄) = ψ(x)+ θ(sabψ(x))+ θ̄(sbψ(x))

+ θθ̄(sbsabψ(x)) ,

Ψ̄(x, θ, θ̄) = ψ̄(x)+ θ(sabψ̄(x))+ θ̄(sbψ̄(x))

+ θθ̄(sbsabψ̄(x)) , (38)

where the (anti-) BRST transformations s(a)b are illus-
trated in (2) and (5). Thus, we obtain the above nilpotent
symmetry transformations for the matter fields together.
The geometrical interpretations for the (anti-) BRST
charges and the corresponding transformations s(a)b are
same as the ones given for the gauge and (anti-) ghost fields
in Sect. 3.

5 Conclusions

The derivation of the mathematically exact expressions for
the nilpotent and anti-commuting (anti-) BRST symme-
try transformations, associated with the matter fields of an
interacting (non-) Abelian gauge theory, has been an out-
standing problem within the framework of the superfield
approach to BRST formalism. In our present endeavour,
we have been able to resolve this long-standing problem be-
cause we have been able to derive the exact form of the
nilpotent (anti-) BRST symmetry transformations for the
matter (Dirac) fields of an SU(N) non-Abelian gauge the-
ory where there is an interaction between the non-Abelian
gauge field and the matter (Dirac) fields7. In fact, the phys-
ical insights into the gauge (i.e., BRST) invariant quanti-
ties (cf. (16) and (27)) have helped us to obtain the proper
restrictions on the five (4,1)-dimensional chiral super sub-
manifold and the general six (4,2)-dimensional supermani-
fold that lead to the above exact derivations.
The above cited gauge (i.e., BRST) invariant quantities

originate from the key properties associated with the (su-
per) covariant derivatives on the supermanifold. Some of
the striking similarities andkeydifferences between the hor-
izontality condition and the gauge invariant condition(s)
are as follows. First, both primarily owe their origin to the
(super) cohomological operators d̃ and d. Second, the ge-
ometrical origin and interpretations for the (anti-) BRST
charges (and the nilpotent symmetry transformations they
generate) remain intact for the validity of both conditions
on the supermanifold. Third, whereas the horizontality con-
dition is an SU(N) covariant restriction (because F (2) →
UF (2)U−1 where U ∈ SU(N)), the other condition(s), as
the name suggests, is (are) the SU(N) gauge invariant con-
dition(s). Finally, as mentioned in the Sect. 3.2, the covari-
ant versions of the gauge-invariant restrictions (cf. (16) and
(27)) do not lead to the exact derivations of the nilpotent

7 In fact, it is the conserved matter Noether current that cou-
ples to the gauge fields of the 1-form (non-) Abelian gauge
theories to generate the interaction term when one requires the
local gauge invariance in the theory (see, e.g. [21] for details).
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symmetry transformations, whereas the horizontality con-
dition (basically a covariant restriction) does lead to the ex-
act derivations of the nilpotent symmetry transformations
for the gauge and (anti-)ghost fields of the Lagrangiandens-
ity of a non-Abelian gauge theory.
In our earlier work [8–13], we have consistently ex-

tended the horizontality condition by requiring the equal-
ity of the supersymmetric versions of the conserved cur-
rents/charges with the ordinary local conserved currents/
charges. In one of our recent papers [13], in addition to
the horizontality condition, some suitable conserved quan-
tities are required to be invariant on the supermanifold.
In the present work and some of its precursors [14, 15],
we have exploited the (super) covariant derivatives in the
construction of the gauge (i.e., BRST) invariant quantities
that have been equated on the specific supermanifolds. The
latter yield the exact expressions for the nilpotent symme-
tries for the matter fields, whereas the former lead to the
consistent derivations of the same. These consistent and
complementary extensions of the horizontality condition
have been christened as the augmented superfield approach
to BRST formulation because they yield transformations
for all the fields of a given 1-form gauge theory.
In his earlier work [22–27], one of the authors has

studied in detail the gauge theories in a different type of
superspace (also called the BRST superspace). The salient
features of this work are that (i) the whole action including
the source terms for the composite operators is accom-
modated in a single compact superspace action, (ii) the
theory has a generalized gauge invariance in superspace,
(iii) the superspace is completely unrestricted such that
the operations like super rotation and translation, in anti-
commuting coordinates, can be carried out, and (iv) the
WT identities are realized in a very simple manner [22–24].
These superspace formulations are used to study the renor-
malization of the gauge theories, in particular, the renor-
malization of gauge invariant operators [23–27]. It would
be an interesting endeavour to study similar things in the
present superfield formulation. Recently, the results of the
covariant horizontality condition for Abelian U(1) gauge
theory have been derived from a gauge invariant condition
involving covariant derivatives, Dirac fields and their con-
nection with (super) 2-forms (F̃ (2))F (2) [28]. It would be
a nice endeavour to check the same for the non-Abelian
gauge theory. Furthermore, it would be very interesting to
find a single restriction on the supermanifold that can pro-
duce the results of the horizontality condition and the new
gauge invariant condition(s) together. These are some of
the issues that are under investigation and our results will
be reported elsewhere [29].
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